

By Ron Dennison, CTO, HDDFA

Why Hard Disk Failure Analysis?

Poor Quality = Poor \$ales

- BUT Only Tier 1 OEMs get factory FA
- Must understand failure root cause to improve system quality
- HDDFA provides root cause FA (RCFA)
 - → BETTER System QUALITY

Better Quality = Better \$ales

Services

- Root Cause FA coupled with
- Design Improvement Services
 - Selection (The RIGHT HDD/SSD)
 - Thermal Design (Hottest drive <45C)
 - Vibration/Shock Design (RV<12.5 rad/s²)
 - Redundancy (Best RAID/Erasure Code, Logical to Physical Shelf/System, FRU)

Why Do Drives Fail? Ageneric HDD Failure Mode Pareto

While the "generic Pareto" remains the same, the specific distribution of failures is a strong function of the operating conditions

- Wrong Environmental Specifications
 - Temperature
 - Humidity
 - Altitude
 - Shock/Vibration
- Wrong Workload Specifications
 - Duty Cycle
 - Workload
 - Combinations

- HDD reliability decreases with increasing temperature.
- Temperature is a major factor impacting reliability

Why Do Drives Fail? Moisture/Lube deposition on Disk

- Wrong Environmental Specifications
 - remperature
 - Humidity

Moisture/Lube deposition on Slider

Courtesy: G.Tyndall (Samsung)

Courtesy: G.Tyndall (Samsung)

Humidity impacts PCB and penetrates inside the drive and can be a major cause of failure in both PC and CE environments

- Wrong Environmental Specifications
 - Temperature
 - Humidity
 - Altitude
 - Shock/Vibration
- Wrong Workload Specifications
 - Duty Cycle
 - Workload
 - Combinations

Corrosion

HDA Connector Corrosion

Head Stuck to Disk

- All HDDs Limited to 10,000 ft or 3,000 m
- BUT Higher Altitude = Lower Air Density = Lower Head Flying Height
- Lower Flying Height = Higher Incidence of Head-Disk-Interference = Higher Annualized Failure Rate (AFR)

- Wrong Environmental Specifications
 - Temperature
 - Humidity
 - Altitude
 - Shock/Vibration
- Wrong Workload Specifications
 - Duty Cycle
 - Workload
 - Combinations

- #1 Cause of Field Failures
- Shock/Vibe → HDI → Failure

- Wrong Environmental Specifications
 - Temperature
 - Humidity
 - Altitude
 - Shock/Vibration
- Wrong Workload Specifications
 - Duty Cycle
 - Workload
 - Combinations

- #1 Cause of Field Failures
- Shock/Vibe → HDI → Failure

Source: Hitachi HDD Manufacturing Engineering, Fujisawa

Why Hard Disk Failure Analysis?

Poor Quality = Poor \$ales

- BUT Only Tier 1 OEMs get factory FA
- Must understand failure root cause to improve system quality
- HDDFA provides root cause FA (RCFA)
 - BETTER System QUALITY

Better Quality = Better \$ales

- Wrong Workload Specifications
 - Duty Cycle

- Consumer HDDs rated for 8/5 operation or 2,000 hours/year.
- Consumer HDD AFRs calculated on 2k hours/year.
- Enterprise HDDs rated for 24/7 operation or 8,760 hours/year.
- Enterprise HDD AFRs calculated on 8,760 hours/year.
- → 4X AFR Delta Enterprise/Client

- Wrong Environmental Specifications
 - Temperature
 - Humidity
 - Altitude
 - Shock/Vibration
- Wrong Workload Specifications
 - Duty Cycle
 - Workload
 - Combinations

Source: WD

- Wrong Environmen Specifications
 - Temperature
 - Humidity
 - Altitude
 - Shock/Vibration
- Wrong Workload Specifications
 - Duty Cycle
 - Workload
 - Combinations

HDD AFR vs. Workload Specifications

- Wrong Environmental Specifications
 - Temperature
 - Humidity
 - Altitude
 - Shock/Vibration
- Wrong Workload Specifications
 - Duty Cycle
 - Workload
 - Combinations

Why Hard Disk Failure Analysis?

Poor Quality = Poor \$ales

- BUT Only Tier 1 OEMs get factory FA
- Must understand failure root cause to improve system quality
- HDDFA provides root cause FA (RCFA)
 - BETTER System QUALITY

Better Quality = Better \$ales

- Wrong Environmental Specifications
 - Temperature
 - Humidity
 - Altitude
 - Shock/Vibrat
- Wrong Workle Specifications
 - Duty Cycle
 - Workload
 - Combination

- Poor System Design
 - Thermal

Poor System Design

- Thermal
- Shock/Vibration

- Wrong Environmental Specifications
 - Temperature
 - Humidity
 - Altitude
 - Shock/Vibration
- Wrong Workload Specifications
 - Duty Cycle
 - Workload
 - Combinations

- Poor System Design
 - Thermal
 - Shock/Vibration

Why Do Drives Fail? Annualized Failure Rates

HDD AFR 1-2% Normal Vibration

HDD AFR > 3% Need

Typical Early HDI Failure: "The Click of Death"

- Head/Media Damage
 Prevents Reading Servo
 Information
- Drive Loads Head, Makes
 Several Attempts to Find
 Servo Data, Parks Head
- Drive Unable to Complete POST

HDI Due to Ramp Damage/Wear

Why Hard Disk Failure Analysis?

Poor Quality = Poor \$ales

- BUT Only Tier 1 OEMs get factory FA
- Must understand failure root cause to improve system quality
- HDDFA provides root cause FA (RCFA)
 - BETTER System QUALITY

Better Quality = Better \$ales

